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Abstract. The spontaneous dimerimtion Of frusuated spin-f antiferromagnetic chains is sNdied 
via a microscopic approach based on a proper set of composite operators he,, pseudo-spin 
operators). Two approximation schemes are developed. Firstly, a spin-wave approximation is 
made via a Dyson-Maldev-like boson msformation. The ground-slate properties and the kiplet 
excitation spectra are obWined 3s functions of fie coupling parameter. Secondly. a microscopic 
treatment, based on pseudo-spin operators, is formulated within the framework of the powerful, 
systematic coupled-cluster method (CCM). Comparison between various approximations is made. 
The advantage of the CCM for the purposes of sysrerrwdc improvement is emphasized 

1. Introduction 

Spontaneous dimerization of theoretical spin-lattice models was perhaps first discovered by 
Majumdar and Ghosh [l] in 1969. They found that for the one-dimensional (ID) spin-f 
system with nearest-neighbour and next-nearest-neighbour couplings, the perfect dimer state, 
in which every two adjacent atoms form a spin-singlet valence bond, is the exact ground 
state of the Hamiltonian at a particular coupling. Obviously, the translational symmetry is 
spontaneously broken in the dimerized system, and the corresponding ground state of the 
ID model is doubly degenerate. 

A spin-1 chain, or other higher-order spin chains, can also exhibit dimerized valence- 
bond structures in their ground states [Z]. Very recently, a series of ID SU(n) spin-s 
(n  = 2s + 1) antiferromagnetic model problems have been solved using a Bethe m u t z  
[3], and the corresponding dimerization order parameters have been exactly calculated 
by the author [4]. In addition to the dimerized spin chains, it is possible that some ID 
spin systems (with integer spin quantum numbers) favour the trimer configuration which 
is produced by a sequence of spin-singlet states formed from every three adjacent spins. 
Furthermore, dimerization or trimerization may also occur in two or more spatial dimensions. 
Clearly, a dimerized or trimerized spin system can be viewed as a kind of solid in which 
the corresponding simple valence bonds are localized and the translational symmetry is 
broken. The perfect dimer or trimer state is not in general the exact ground state of a given 
Hamiltonian, but for some systems the ground state may still possess a non-zero solid-like 
dimer or trimer long-range order and hence show the characteristics of a quantum solid. (It 
therefore seems more appropriate to refer to these solid-like system collectively as ‘valence- 
bond lattices’ [5].) Due to quantum correlations, one expects that the corresponding long- 
range order of those quantum solids will be reduced or vanish at certain coupling strengths. 
A good example is provided by the ground state of the spin-1 SU(3) antiferromagnetic chain 
[4], where the dimerization order parameter is reduced to 42%. 
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One is quite familiar with phonons in ordinary atomic solids and magnons in 
ferromagnets or antiferromagnets. In  particular, the spin-wave theory of Anderson [6] 
provides a simple and excellent description of the spin correlations in the ground and 
low-lying excited states for a number of antifenomagnets. Similar approximations have 
also been developed for some dimerized systems. Parkinson 171 formulated a spin-wave 
approximation based on a spin-! dimer state. He focused on the spin-f Heisenberg model 
and employed the method of equations of motion. A triplet excitation spectrum of &sink 
was obtained. This compares well with the exact result of a triplet spectrum of ( ~ / 2 )  sink. 
Chubukov [8] later provided a similar spin-wave theory by using a transformation similar to 
that of Holstein and Primakoff to study specifically the dimerization of the spin-1 chains with 
Heisenberg and biquadratic exchanges. Read and Sachdev [9] investigated the dimerization 
problem within the framework of Schwinger boson field theory. Very recently, the author 
[IO] has extended Parkinson’s theory to discuss possible trimerization of a ID isotropic 
spin-1 system. The concept of dimerization has also been extended to 2D spin systems, e.g., 
the J I - J ~  Heisenberg model on the square lattice [ I l l .  

In this article. I intend to investigate the dimerization of spin systems via a systematic, 
microscopic approach. Because of their simplicity, I focus on the ID spin-; Heisenberg 
chains with nearest-neighhour and next-nearest-neighbour couplings, for which the dimer 
state is the ground state at a particular coupling [l]. Following Parkinson [7], I study the 
dimerization in terms of a proper set of composite operators (pseudo-spin operators). I 
extend and reformulate Parkinson’s theory so that the ground-state properties as well as 
the excitations can be investigated. Firstly, by employing a Dyson-MaMev-like boson 
transformation I121 for the pseudo-spin operators, I develop a spin-wave theory. The 
advantage of using Dyson-MalCev transformation lies in the fact that Hamiltonian can 
be expressed in a compact form as a finite-order polynomial of boson operators, rather than 
as an infinite series which is the case when the Holstein-Primakoff-like transformation is 
used (see, e.g., [SI). Secondly, I apply the powerful, systematic, microscopic many-body 
theory of the coupled-cluster method (CCM) [I31 based on the pseudo-spin operators of the 
frustrated spin-+ chain. A systematic approximation scheme within the CCM approach is 
developed for the ground state. The CCM has recently been successfully applied to the 
various spin systems with Ising-like long-range order [I41 or with planar long-range order 
[15]. The excellent results produced by the CCM approximations, particularly for the spin 
systems with Ising-like long-range order, provide the main motivation for the current CCM 
approach to the dimerization problems. 

It should be emphasized that the dimerized or trimerized states are not merely 
mathematical artifacts. In fact, the ID frustrated spin-f system has recently been shown 
to be relevant to the reconstruction of FCC metal surfaces at finite temperature, with the spin 
dimerized phase corresponding to the disordered flat surfaces 1161. 

In section 2 the composite operators in a 
matrix representation are introduced and the corresponding boson transformations are given. 
Section 3 is devoted to the spin-wave approximation for the ID spin-f model. The ground- 
state energy and excitation spectra are obtained as functions of the coupling constants. In 
section 4 I describe in detail the microscopic CCM for the ground state of the dimerized spin 
system. The results from the CCM approximation are compared with the spin-wave theory. 
I conclude this article with a general discussion in section 5. 

The plan of this paper is as follows. 

2. Pseudo-spin operators and their bosonizations 

I first consider a two-spin system, each component being a spin i. For completeness, some 
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of the analysis given by Parkinson 171 is repeated here. Clearly, there are four states for 
such a two-spin system. If 11.) and 1.1) are used to represent spin-up and spin-down states 
respectively, the singlet state can be written as 

and the triplet states with (= sf +si) = 1, 0, -1  are given by respectively 

Following Parkinson [7 ] ,  I employ a matrix representation. Each of the four states of 
equations (2.1) and (2.2) is then represented by a column matrix with a single non-zero 
element. One can then introduce operators Aij as having only a single non-zero element of 
a (4 x 4) matrix, namely {i’lAijl j ’ )  = S i i d j ~ .  For example, AIO (A30) is an operator which 
increases (decreases) skml by one unit, while A20 leaves it unchanged. Their Hermitian 
conjugates (i.e., transpose matrices) have the opposite effects. Together with other operators, 
these sixteen operators form a complete set for the spin pair and any operator of the pair 
can be written as a linear combination of these sixteen. 

For a pair of spins, of which has spin greater than one half, similar operators can be 
defined. For example, there are nine states for a two-spin system, each component having 
spin I ,  and hence there are 81 (9 x 9) Aij operators which form a complete set for a pair of 
spin-1 atoms. For a three-spin system, each component having spin 1, the dimensionality 
of the mahix is 27 [lo]. 

It is worth pointing out that these Aij operators are non-linear in terms of the original 
single-spin operators; for example, 

It is in this sense that I have referred to these Aij as composite operators [ I O ] .  (Notice that 
Am is the usual spin-singlet projection operator.) Furthermore, it is easy to prove that they 
obey the following pseudo-spin algebra: 

[Ai j ,  A M ]  = A i d j k  - AxjSri. (2.4) 

Therefore, I also refer to them as pseudo-spin operators. My assumption in this paper is 
that it is more natural to study the dimerization in terms of these composite operators rather 
than the original single-spin operators. The spin-wave theory in section 3 and the CCM 
approximations in section 4 are developed on the basis of this assumption. 

In a straightforward manner, one can express the single-spin operators in terms of Aij 
operators. They are given by [7] 

( 2 . 5 ~ )  

(2.56) 

( 2 . 5 ~ )  

1 1 
2 oz - Azo + Ail - A33) ss 1 - - 2 ( A ~ + A ~ ~ + A ~ ~ - A 3 3 )  - s ~ = - ( - A  

I - f i  = - A  
1 1 

S- - -(A30 - AOI + A Z I  + A32) S- - -(A01 - A30 t AZI + A32) 

1 
s+ I - - - Ji(403 - A I O  + A I Z  + A B )  s; = (At0 - A03 + A12 + A d .  

1 
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Recognizing that Ajj obeys the pseudo-spin algebra of (2.4), one can make the following 
Dyson-Mal6ev transformation 1121: 

t + Am = 1 - a:al -a ,  a2 - a3 a3 

A,,o = aJAoo 

A,,,, = a,’.,, A,, =.;a, 

Ao,, = a,, 

where p ,  q = 1,2,3, and a,,, a,’ are three sets of boson operators, obeying the usual boson 
commutation 

[a,. $1 = 1 (2.7) 

and with all other commutators yielding zero. 
By definition the singlet state IO) of (2.1) is the vacuum state of the bosons, namely 

aJ0)  = 0 p = 1,2,3. (2.8) 

The physical states correspond to the vacuum state 10) and the three states with only 
one boson excited. Furthermore, as the matrix elements between physical and unphysical 
subspaces are equal to zero, the transformation given by (2.6) is exact at zero temperature 
just as in the case of the conventional spin-wave theory 161. 

A general spin-; Hamiltonian can be expressed in terms of Aij operators according 
to (2.5) and then in terms of those three sets of boson operators according to (2.6). In 
section 3 I consider a spin-wave theory for the frustrated ID model using these pseudo-spin 
operators and their bosonizations. In section 4 I develop a microscopic formalism within 
the framework of the CCM also based on these pseudo-spin operators. 

3. Spin-wave theory 

The 1D spin-; isotropic model with nearest-neighbour and next-nearest-neighbour couplings 
is described by the Hamiltonian 

where J is the coupling constant and N is the total number of spins. I use the periodic 
boundary condition and choose even N for convenience. I have also taken the lattice spacing 
to be unity. At J = i, the Hamiltonian of (3.1) becomes the well known Majumdar-Ghosh 
model [I], which has two degenerate dimer ground states, with one of them given by 

NI2 

ID) = n lO)Zr-l,> (3.2) 

where the notation represents the singlet-paired state of (2.1). This dimer state ID) is 
shown graphically in figure 1. After choosing the dimer indices as shown in figure 1, the 
Hamiltonian can be written as 

I= I 

(3.3) 
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One can then express H in terms of the composite operators Aij  by (2.5) as 

NI2 

I= I 
H = CW, i $Hr.,+i + fJH;,,+l) 

with 

1 
4 H,=-- A& 

I (-A;* + A;, - A;,, - AU(A;;] + A;:~ +A;;[ - A;;[) 

+ (A;, +A;] - A;, + A;*)(A;~+' -A;;' + A;;] t A$]) 

+ (-AL3 + ATo + A;, + A'&)(-AL::' + A;:' + A$ + A;;') 

H;.~+] = (A& + A;,)(A;;] + A;;') + (A;, - A;~)(A;;' - A;;() 

+ (A;, - A;,,)(A$ - A;;]) +(A;( + A;&A;;] +A;+') 

+ (A;,, - A;~)(A;;, -A;;? +(A;? + A'&)(A;;~ +A;,+'). 

5969 

(3.4) 

(3.5~) 

( 3 3 )  

(3.5c) 

I =  1 2 3 4 

Figure 1. The perfect dimer state and dimer indexing. Each bond represents a singlet 
configuration 3s given by equation (2.1). 

By (2.6). one can further express H in terms of  the three sets of boson operators. For 
clarity, I use different notations for these three sets of bosons 

a = a l .  a+ = a: b a3, b+ =a: c 3 az, c+ 3'. (3.6) 

Now the Hamiltonian of (3 .4)  can be written as 

H = H o + V  (3.7) 

where Ho contains only the quadratic terms and a constant 

1 
4 

alar + b;b, + czc,  + -(2J - I)[@, - bl)(a:+, - b,+]) 

and V contains higher-order terms up to the sixth: 

v v3 + v4+ & + v6. 

(3.8) 

(3.9) 
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There is a close analogy between the bosonizations in the present case and in Anderson's 
spin-wave theory 161, where the N6el state is the vacuum state for the two sets of boson 
operators. Clearly, Aoo corresponds to sz in the conventional spin-wave theory, while A,o 
( A h )  corresponds to s+ (s-) etc. Notice that there are three sets of independent boson 
operators in the present case, but there are only two in the conventional spin-wave theory. 
This is because the symmetry-broken vacuum state (the N6el state) in the conventional 
spin-wave theory is in the subspace of zero s&,, (5 xf sf) while the symmetry-broken 
vacuum state (the dimer valence-bond state) in the present case is in the subspace of zero 
vector stool (= xf sf). It is already clear that one should expect a triplet excitation of spin 
1 for the present dimerized system. 

After Fourier transforming for the three sets of boson operators 

ak = g g e x p ( - 2 i k r ) a ,  I= 1 

bk = g F e x p ( - 2 i k r ) b r  ,=I 

= g E e x p ( - 2 i k r ) c ,  I= 1 

(3.10) 

(the factor of 2 in the exponential functions is due to the double spacings in the dimer index 
r), Ho of (3.8) can be diagonalized by obtaining the usual Bogoliubov transfomations 

where ex is given by 

(1 -2J)cos2k 
2 - ( I  -2J)cos2k' 

tanh 28k = 

(3.11) 

(3.12) 

The diagonalized Hamiltonian HO can be simply written as 

where the triplet spectrum is given by 

which agrees with Parkinson [7] at J = 0, and where EO is defined as 

Eo 3 3 
- = - ~ C [ ~ I - ( 1 - 2 J ) c o s 2 k - l ] - - .  8 

4 k  

In equations (3.13) and (3.15) the summation over k is defined as 

(3.14) 

(3.15) 

(3.16) 
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It is well known [I71 that the ground state 100) of the quadratic Hamiltonian HO is 
given by the two-body form as 

(3.17) 

where 8, is determined by (3.12) and ID) is the boson vacuum state of (3.2). 
The ground-state energy E, within this spin-wave theory is given by the expectation 

value of the full Hamiltonian of (3.7) with respect to 100). Clearly, the odd-body terms yield 
zero, and one has E, = EO + (V,) + {&) ,  where (V,) and (v6) can be cakulated by Wick’s 
theorem. If one ignores V, and v6 which represent spin-wave interactions, the ground-state 
energy is then approximated by Eo of (3.15). This is the result shown in figure 2, where I 
also include for comparison the numerical results of Tonegawa and Harada [18], obtained 
by extrapolating the finite-size calculations for J 4 1/2, and the exact results by Parkinson 
[I91 of the N = 20 system for J z 1/2. Notice that at J = 1/2 (the Majumdar-Ghosh 
point), equation (3.15) gives the exact result, namely Eo/N = -3/8. This is not surprising 
because 100) = ID) at this point. At J = 0 (Heisenberg), one has Eo/N = -0.4498, 
whereas the exact result by the Bethe amatz [I41 is -0.4432; but one should be careful 
here because J = 0 corresponds to one of the terminating points at  which the spin-wave 
theory is most unreliable. as discussed below. 

From the triplet spectrum of (3.14) one sees that there are two teiminating points, J = 0 
and 1 ,  beyond which (i.e., for J < 0 and J 1) the spin-wave excitations are unstable. 
In figure 3, the triplet excitation spectrum is shown schematically’for several values of the 
coupling constant J .  It is clear that in the region 0 < J c 1, there is a non-zero gap, and 
that this gap collapses at the terminating points. In particular, the triplet spectrum is flat 
with a gap of 1 at J = 1/2. The flatness reflects the fact that at J = I /& HO of (3.8) 
contains no coupling at all between pairs of spins (dimers). More realistic calculations for 
the excitations at J = 1/2 were performed by Shastry and Sutherland and others [20]. They 
obtained a spectrum of soliton-like excitations with the minimum gap of 0.25 at k = 0 and 
R and the maximum gap of 1 at k = a/2. Tonegawa and Harada’s numerical calculations 
[I81 confirmed the non-zero gap at J = 1/2 and in the nearby region. They predicted 
that the gap collapses at J x 0.3, while Haldane [21]. who used a fermion representation, 
predicted this value to be about 116. This gapless point seems to signal a phase transition 
from the dimerized phase to a critical phase similar to what is predicted by the Heisenberg 
model at J = 0. In any case, the triplet spectrum of A s i n k  from (3.14) at J = 0 seems 
to agree well with the exact result of ( ~ / 2 )  sink, as pointed out by Parkinson [7]. 

A more intriguing situation occurs for J > 1/2, where the spin-wave spectrum has a 
minimum at k = a/2. In particular, at J = I, the spectrum is gapless with a cusp at 
k = a/2. Whether or not this suggests a phase change in the spatial periodicity of the 
system from double to fourfold, for example, is still unclear. The numerical calculations of  
the smcture factor by Tonegawa and Harada [ 181 certainly showed a complicated feature. 
for J l/2. There is also numerical evidence in the excitation spectra, which suggests that 
the spatial periodicity is not twofold in the region near J = 1 [19]. Clearly, the spin-wave 
theory described here is not adequate for this task and higher-order calculations are needed. 

One can also straightforwardly calculate the long-range dimerization order parameter 
within the present spin-wave theory. The dimer order parameter D is defined as 
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-0.4 

-0.5 

& 
mM 

-0.6 

70.7 

-0.5 0 0.5 1 1.5 
J 

Fiyre 2. Ground-stale energy per spin as a function of the coupling constant I ,  Shown are 
results from lhe spin-wave theory (dolled), the su82.2 scheme (dashed), and the full sum scheme 
(long dashed). The terminating points of lhe su82 scheme and spin-wave theory are indicated. 
The numerical mults from [19.20] are also included (solid). 

where the expectation is with respect to the ground state of the system. From (2.5) and (2.6), 
using the spin-wave ground state 100) of (3.17), it is easy to show that in the spin-wave 
approximation, D is non-zero in the region 0 c J c 1 and gradually diminishes when 
J moves toward the two terminating points. But at the terminating points ( J  = 0, I), D 
diverges to -W. implying a breakdown of the spin-wave theory. In the following section, 
I provide an alternative approach to the dimerization problem by applying the microscopic 
CCM. 

4. The coupled-cluster approach 

The CCM is widely recognized nowadays as providing one of the most universally applicable, 
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k 

I J=3/4 I J=l 

Figure 3. Schematic plots of the triplet excitation spectrum of (3.14) for various values of the 
coupling canstant J .  

most powerful and most accurate of all microscopic formulations of quantum many-body 
theory [13]. The recent application of the CCM to various spin models has produced excellent 
numerical results [14,15]. It therefore seems appropriate and timely to apply the CCM to the 
dimerization problem. The interested reader is referred to [13] for the general formalism 
of the CCM and to [I41 for its particular application to the spin systems with an anticipated 
Ising-like long-range order. 

Generally speaking, the CCM starts with a proper model state IO), which is usually a 
simple, uncorrelated many-body wavefunction, and incorporates many-body correlations on 
top of IO) by acting on i t  with an exponentiated correlation operator S. This operator S 
consists of purely so-called configuration creation operators with respect to the model state 
IO), and is partitioned by one-body, two-body, . . ., up to N-body correlation operators with 
N the number of particles in the system. Thus, the CCM ansak for the ground ket state is 

1 ~ ~ )  = eSIO). (4.1) 

The Schrodinger equation of the ground state, after a simple manipulation, can then be 
written as 

e-’HeSI@) = ~ ~ 1 0 )  (4.2) 
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where E ,  is the ground-state energy, and where the similarity-transformed Hamiltonian can 
be expressed as a series of nested commutators 

1 
2!  e - S H e S = H + [ H . S l + - - I I H . S l , S l + . ~ .  (4.3) 

which usually terminates at the fourth-order for most Hamiltonians with pair-interaction 
potentials [13]. Equations (4.1)-(4.3) are the hallmarks of the CCM. 

For the case of dimerization under consideration, it is natural to choose the dimer state 
ID) of (3.2) as the model state, namely 10) = ID). The configuration creation operators 
with respect to this model state ID) are clearly given by any combinations of the three 
operators A;,,, Ah, and A'&,. Their Hermitian conjugates are the corresponding annihilation 
operators. Since the antiferromagnetic ground state is definitely in the sector of zero sku, 
the correlation operator S is in general written in the form 

(4.4) 
"= I 

where N / 2  is the total number of valence bonds of the spin-4 chain, and the n-body 
correlation operators S, are given respectively by 

(4.52) 

(4.56) 

(4.5c) 

etc. In (4.56) and (45) the primes on the summations imply exclusion of the terms with 
any pair of indices equal. We notice the similarity between the spin-wave ground state IQo) 
of (3.17) and the CCM state IY,) of (4.1) if S is replaced by S2. W also notice the similarity 
between the present CCM analysis and that of [ 151 where the spin-I model state is given by 
the simple planar configuration with sf = 0 for all sites 1. 

The ground-state energy is obtained by taking the inner product of the Schriidinger 
equation (4.2) with the model state ID) itself, namely 

E, = (Dle-SHeSID). (4.6) 

The correlation coefficients {Sr,r*.,J are determined from the coupled set of equations 
obtained by taking inner products of (4.2) with states constructed from the corresponding 
annihilation operators, namely 

(DIA&e-SHeSID) = 0 for all r (4.7) 

(DIA~lA$3e-SHeSID) = 0 for all r, r'(# r )  (4.8) 

for the one-body equation: 
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and 

(DIA;2A<ze-SHeSID) = 0 for all r,  r'(# r )  (4.9) 

for the two-body equations. The three-body equations and higher-order many-body 
equations are obtained in a similar fashion. 

One sees that the similarity-transformed Hamiltonian of (4.3) is needed in all of the 
above equations. I leave details of the derivation to the appendix and only point out that, 
as expected, the otherwise infinite expansion series of (4.3) does indeed terminate at the 
fourth-order term. In fact, the exact energy equation (4.6) can be straightforwardly derived 
as 

E .  1 
N 8  
- = - -  - [(I - 2J)(2bi1' +by' - a )  - 31 (4.10) 

where I have used the translational and reflectional symmetries, setting accordingly 

with i = 1.2 and r = rz - rl (4.11) s r  = a S,,,,? ( i )  = S") R , l ,  = 6'" r 

It is also obvious that b!!; =by'. 
The exact one-body equation of (4.7) can also be easily derived. It couples only to the 

two-body coefficients. Similarly, the two-body equations of (4.8) and (4.9) couple only to 
the onebody and the three-body coefficients, and so on. From the one-body equation, it 
is interesting to note that the physical solution is given by a = 0, implying no one-body 
correlations for the dimerization problem. This is not surprising because the model state 
ID) is in the sector of zero total spin vector (i.e., stom] = 0), and the one-body correlation 
operator SI of (4.50) will take the state out of this sector. Furthermore. if one assumes that 
the two sets of the two-body correlation coefficients are identical, i.e. 

bj]) = b") E b, (4.12) 

the two-body correlation operator Sz then commmutes with the total spin vector smd. This 
is a necessary condition if one requires the CCM ground state to be in the sector of zero 
storal. (Actually, one requires every correlation operator Sa to commute with storal.) The 
energy equation is now reduced to 

(4.13) 

One clearly needs to employ an approximation scheme for any practical calculation. 
The most common approximation scheme in the CCM is the so-called SUBn scheme, in 
which one keeps up to n-body correlation operators and sets all the higher-order many- 
body correlation operators S,>, (m > n) to zero. I consider the SUB2 scheme here. I find 
that within the SuB2 scheme, the condition (4.12) is indeed satisfied. After simplification, 
the two identical two-body equations are given by 

3 
N 8  
Es - - - -[(I - 2J)bi - 11. 

(4.14) 

and 

K1 E 1 - 2J Kz 4(1 - 2Klb1) K3 E K1( 1 + 4b:) - 2(1+ 2J)bf .  (4.15) 
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A simpler approximation can be made from the full SUB2 equation (4.14). namely the 
so-called SUB2-2 scheme in which one keeps only the single coefficient, b l ,  setting all other 
b, equal to zero (Ir] > 1). Equation (4.14) then reduces to 

1 - 2 5  + 2(3 - 2J)bl - 9( 1 - 2J)b: = 0 (4.16) 

with the physical solution 

I 
9(1 - 25)  bi = [3 - 25 - J40Jz - 485 + IS]. (4.17) 

The full SUB2 equation (4.14) can also be solved via a Fourier transformation exactly 
similar to (3.9) of 1151. Here I only quote the final result given by the following self- 
consistency equation for bl: 

where the constants kl and kz are defined by 

and where X is defined by 

x 2K1 COS% - K2 + KzJl -ki COS% +kzc0s22q (4.19b) ( 
After obtaining bl as a function of J from (4.17) or (4.18). the ground-state energy 

is then given by substituting bi into (4.13). These ground-state energies are shown in 
figure 2, together with the results of the spin-wave theory and of the numerical calculations 
[19,20] for comparison. As in the spin-wave theory described in section 3, at J = 1/2 
(the Majumdar-Ghosh point) the exact result is recovered for both the SUB2-2 and full SUB2 
schemes-namely, bl = 0 and E,/N = -3/8. At the Heisenberg point ( J  = 0), the SUBZ-2 
and full SUB2 schemes give E,/N = -0.4268, -0.4298 respectively, slightly higher values 
than the exact result of -0.4432. Furthermore, it is interesting to observe that in the full 
SUB2 scheme, there are also two terminating points, J i ' )  = -0.4443 and J:*) = 1.591, 
beyond which, namely for J c J:') and J > J j Z ) ,  there is no real solution in (4.18). The 
corresponding energy values are -0.5172 and -0.6977 respectively. It has previously been 
argued that CCM SUB2 terminating points may correspond to the phase transition critical 
points in the past [ 14,151. It seems reasonable to consider that possibility again here. From 
our past experience, I believe that the higher-order approximations for the ground state, and 
the calculations of the low-lying excitation spectra and of spin correlation functions will 
reveal more information about the possible phase transitions. For present purposes, one 
sees from figure 2 that the extremely simple SUBZ scheme gives much better results for a 
wide range of the coupling constant J than does the spin-wave theory, at least as far as the 
ground-state energy is concerned. 
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5. Discussion 

In this paper, I have studied the dimerization problem via a microscopic approach. employing 
the proper set of composite operators of Parkinson [71. Two approximation schemes, namely 
the spin-wave theory and a CCM analysis, have been applied to the I D  frustrated spin-: 
model. The ground-state and low-lying excited energies are obtained as functions of the 
coupling constant. The implications of possible phase transitions at the naturally arising 
terminating points of the solutions have been discussed. Another approach may be provided 
by using a variational trial wave function of the type of equations (4.1) and (4.5); this is 
similar to what was done in the calculation of Sachdev for the spin-+ Heisenberg model 
v-1. 

From the present preliminary attempt to formulate a microscopic theory for the 
dimerization problem, it is clear that higher-order calculations within the present analysis 
are needed for both the ground and excited states. The very successful applications [I41 
of the cCM to the spin systems with an king-like long-range order seem to suggest that 
the CCM can also provide a systematic and potentially accurate approximation scheme for 
the dimerization problem. Furthermore, within the formalism presented in this paper, it 
is straightforward to extend the same analysis to both higher-order dimensionality and/or 
spin systems with spin quantum number greater than one half. In particular, the ZD spin-f 
Heisenberg model on the square lattice with J1-Jz couplings [9,11] has been under intensive 
study for its possible dimerization. An equally interesting Hamiltonian model is provided 
by the I D  spin-1 Heisenberg biquadratic systems, where it is known the ground state is 
dimerized at a particular coupling constant [4], and where trimerization is also possible in 
another region [IO]. 
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Appendix 

In this appendix, I derive the similarity transformations within the SUBI and SUBZ schemes 
of the CCM, described in section 4 .  

Notice that in the similarity transformation of (4.3), any quadratic term in the 
Hamiltonian of equations (3.4)+3.5) can be transformed as 

and each similarity-transformed operator can be expanded as a series of nested commutators 

Since the correlation operator S consists only of the creation operators Ala, A30 and AB,  
the expansion series of (A2) terminates at first order in S for all Am and A,, with n, m # 0, 
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and at second order in S for the pure annihilation operators Aon with n # 0, by the pseudo- 
spin algebra of (2.4). Therefore the similarity-transformed Hamiltonian of (4.3) terminates 
at fourth order. 

In the SUBI scheme, one makes the replacement S - SI, where SI is given by ( 4 . 5 ~ ) .  
From (A2), it is straightforward to derive the following SUBI similarity transformations: 

$, = Aio qm = A:, 

(A31 2 - -A' oo - R2 = A:, + &Aio 

& = A& + &(A& - A;J - S?A!& 

where n = 1,2,3 and nz = 1, 3, and where the definition 

2. ' I  e-S'A(.eS1 '1 (A4) 

is used. 
In the SUB2 scheme, one makes the replacement S -+ SI + SZ. One can firstly make 

the SUB] similarity transform by using (A3). and then apply the following SUBZ similarity 
transform for each A;j: 
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where n = 1,2,3,  and the primes on the summations imply exclusion of any pair of indices 
that are equal, and where the operators with a bar represent the similarity transform for the 
Sz correlation operator 

i r .  U - = e-S2A;ies2. 

In deriving (A5), I have used the fact that 

(1) - $2' = 0 S'Z' - S'Z' 5,,,- ,.r ,,e- , ' , r .  

After making the similarity transformations of (A3) d (A5), the cc: quations (4.6X4.9) 
can be derived by using the pseudo-spin algebra of (2.4) to move all the creation operators 
AID, AZO. A30 in each term to the left, and all the annihilation operators Aol, Aoz, A03 (also 
Anm, n ,  m # 0) i n  each term to the right, and by using the fact that 

and 

for all r . 
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